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Prime factorization using quantum 
variational imaginary time 
evolution
Raja Selvarajan1, Vivek Dixit1, Xingshan Cui2,3, Travis S. Humble3 & Sabre Kais1,3*

The road to computing on quantum devices has been accelerated by the promises that come from 
using Shor’s algorithm to reduce the complexity of prime factorization. However, this promise hast 
not yet been realized due to noisy qubits and lack of robust error correction schemes. Here we explore 
a promising, alternative method for prime factorization that uses well-established techniques from 
variational imaginary time evolution. We create a Hamiltonian whose ground state encodes the 
solution to the problem and use variational techniques to evolve a state iteratively towards these 
prime factors. We show that the number of circuits evaluated in each iteration scales as O(n5d) , where 
n is the bit-length of the number to be factorized and d is the depth of the circuit. We use a single layer 
of entangling gates to factorize 36 numbers represented using 7, 8, and 9-qubit Hamiltonians. We also 
verify the method’s performance by implementing it on the IBMQ Lima hardware to factorize 55, 65, 
77 and 91 which are greater than the largest number (21) to have been factorized on IBMQ hardware.

Quantum computation is likely to revolutionize how computation is performed in the field of science, engineer-
ing and finance. Computations are performed on quantum states that make use of superposition and entangle-
ment to allow for speedups. Future potential applications include  cryptography1, search  problems2, simulation 
of quantum  systems3, quantum  annealing4, machine  learning5, computation  biology6, quantum  materials7, and 
problems in  optimization8.  Refer9 for an extensive introduction into the field of quantum computation. Major 
efforts toward scaling the current algorithm focuses on developing error correction and mitigation schemes, as 
well as designing operations that make use of fewer ancilla qubits and gate  operations10. In line with the current 
major developments, we investigate a more practical near-term scheme for prime factorization that is likely to 
achieve good results on noisy qubits.

Prime factorization involves expressing a composite number as the product of its prime factors. For generic 
large numbers that lack any structure, the quadratic sieve is the most commonly used technique. This can be com-
putationally expensive and is exploited in RSA cryptography to guarantee information security over networks. 
From Shor’s11 work on period finding, it was shown that one could exploit the quantum Fourier transform to 
compute factors in steps that scaled polynomial in the number of bits. Subsequently, Vandersypen et al.12 real-
ized this experimentally by factorizing N = 15 using spin-1/2 nuclei as qubits and then Lucero et al.13 by using 
superconducting qubits. A simplified version of Shor’s algorithm was worked out by Geller et al.14for products of 
Fermat primes (3, 5, 17, 257 and 65537) . Later, Jian et al.15 proposed an alternative method to compute factors by 
solving an optimization problem using quantum annealing demonstrated on the D-Wave quantum annealer. The 
largest experimental realization of general method factorization schemes includes Shor’s algorithm to factorize 
 2113 and optimization using the D-Wave quantum annealer to factorize  22335715. In addition, large numbers 
with specific properties have also been factorized by exploiting structure contained in the number. In Ref.16, the 
authors use a multiplication table to factorize 56153 using only 4 qubits. Despite being able to factorize large 
numbers with relatively few qubits by exploiting the structure in the number, these methods do not reveal the 
power of quantum computers against generic numbers. Studies have not been made with respect to convergence 
on the solution with increasing the number of qubits.

In this paper we explore how one could use imaginary time evolution to factorize numbers with relatively 
higher probability. Imaginary time evolution has long been used as a theoretical tool in physics to compute 
ground-state wave-functions17. Shingu et al.18 show how using imaginary time evolution one could train a 
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Boltzmann network efficiently, computing the exact model independent term in the training. Recently, Motta 
et al.19 exploits the Quantum Imaginary Time Evolution (QITE) algorithm to determine eigenstates and thermal 
states on a quantum computer. McArdle et al.20 showed how one could make use of variational circuits to cre-
ate states that represent the dynamics of the imaginary time evolution. They use it to compute the ground state 
wavefunction of hydrogen and lithium hydride, while Yeter-Aydeniz et al.21 demonstrate that the QITE algorithm 
serves as a quantum computing benchmark for computational chemistry methods.

Herein, we develop an optimization function using the method introduced by  Burges22 and then use it as a 
Hamiltonian to perform imaginary time evolution on a uniform superposition of all possible considered solu-
tions to the factorization problem. We employ variational circuits to prepare a quantum state that encodes the 
solution and classically train all parameters. Simulations using Python Numpy packages and IBM-QASM are 
used to verify the performance. The robustness of the techniques against noise is verified on IBMQ hardware for 
up to 5 qubits allowing factorization of numbers up to 91 with a probability over 73% . To the best of our knowl-
edge this is the largest number that has been factorized on a quantum circuit using a general purpose algorithm 
that does not exploit any structural properties of the number. Each iteration involves evaluating a number of 
circuits that scales as O(n5d) where n is the bit-string length of the number to be factorized and d is the circuit 
depth. A few reasons make factorization an ideal candidate to be solved using Imaginary time evolution with 
variational circuits. The number of terms in the Hamiltonian expansion scales polynomial with respect to the 
number of qubits. The amplitude of coefficients in the state vector is real, which simplifies the parameterization 
of the landscape to be explored and updates to be made. Each iteration only needs to amplify the amplitude of 
the solution rather than exactly simulate the imaginary time evolution. These factors make Variational QITE a 
good algorithm to be studied in the context of optimization, and make prime factorization a good test bed to 
evaluate its working. We are hoping that future rigorous work along these lines, with the availability of more less 
noisy qubits, might provide for ways in which this method complements with VQE for general optimization 
problems approached using variational methods.

Background
The Schrödinger equation for a closed system describes dynamics according to some Hamiltonian that governs 
it. Allowing for time to be complex, we are able to create thermal states of specific temperature starting from a 
maximally mixed configuration, i.e, ρT=1/τ = e−Hτ /Tr[e−Hτ ] . Preparing a system at low temperature or alter-
natively letting the system evolve to large imaginary time values we can more often sample the ground state 
configuration for a given Hamiltonian. We shall make use of this property to encode the required solution of 
the problem we intend to solve in the later sections.

The quantum state we intend to prepare using QITE is given by,

where N(τ ) = 1/
√

�ψ(0)|e−2Hτ |ψ(0)� is a normalization factor. Equation (1) satisfies the Wick rotated Schro-
dinger equation

where Eτ = �ψ(τ)|H|ψ(τ)�.
Let |φ(τ)� be a state that is prepared by applying a series of unitary gates as follows

We choose the initial parameters to create the state on which the evolution is to be performed. We demand that 
Eq. (3) is an approximate solution to Eq. (2) by demanding the norm of the variation to vanish, i.e,

Solving the above equation using McLachlan’s variational principle (see Supplementary section 1 for proof) we 
obtain

where

The derivatives on the state vectors with respect to the parameters of the circuit can be simplified into a sum of 
other basic circuit functions. For instance, the derivative of the Rx , Ry and Rz rotation gates with respect to their 
parameter amounts to a mere shift of the parameter by an angle of π radians. We can further express H as a sum 
of a string of tensor products of Pauli operators allowing both A and C to be computed as the sum of terms that 
take the form aR(eiφ�0|U |0�) , where a is some real number and φ is a real phase. Terms of this form can be 
efficiently computed on quantum hardware using the Hadamard test.
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Evaluating the gradients using Eq. (5), we can then proceed to use gradient descent to update the parameters 
of the circuit as follows

where �̇θ(τ ) = A−1(τ )C(τ ) . Using sufficient layers to the variational circuit and small δτ time iterations for 
updating our parameters, we can prepare states that closely emulate the imaginary time evolution on the state 
|ψ(0)� . We would like to note that the dynamics of ITE is non unitary and thus we are only able to prepare the 
output state starting from a fixed initial state using variational methods.

Methods
The problem of prime factorization involves expressing a number as a product of its primes. Here we shall focus 
specifically on biprimes, product of 2 prime numbers. Shor’s algorithm aims to solve this problem by reducing 
it to a period finding problem of the function ax mod N, where a is any random number and N is the number to 
be factorized. This algorithm uses a quantum subroutine that exploits the power of quantum Fourier transform 
as a part of a modified phase estimation algorithm. The largest number factorized using Shor’s algorithm is 21. 
Being highly sensitive to discrete errors, Shor’s algorithm fails to scale without viable error correction  schemes23.

Here we show how to factorize a given number by first casting it as an optimization problem. Let the number 
N be given by a product of 2 prime numbers p and q. We model the problem of finding p and q given N as an 
optimization problem cast as the following cost function

Note that in Eq. (8), H(p, q) has global minima when p,q factorize N with a minimum value of 0. The cost function 
can thus be treated as a Hamiltonian whose ground state encodes the solution to our problem. We express both 
p and q as a binary string summation which will allow us to transfer to a qubit representation space. Assuming 
p has an m bit representation and q has an l bit representation, we get

Note that Eq. (8) has a trivial solution N = N × 1 . To exclude this solution, we can restrict the search space 
of our solution by using a lower bound. The smallest prime factor we are looking for is greater than 2 and less 
than N/2. Thus using N − 1 qubits to represent p and q we can discard the trivial solution from showing up in 
our simulation. Since both p and q are prime numbers, we are allowed to set the bit 0 to be 1 in either expres-
sion making it indivisible by 2. To move to a scaled spin representation we transform all the binary variables 
bi that represents either the pi ’s or qi ’s to bi = (si + 1)/2 . In this representation, si takes the value ±1 such that 
si = 1 maps to bi = 1 and si = −1 maps to bi = 0 . We thus convert a factorization problem into an optimization 
problem over the spin variables.

Minimizing this optimization function shall result in the solution we seek. We use imaginary time evolution 
to evolve the output state starting from a uniform superposition over all possible solutions at T = 0 . The circuit 
parameters are updated according to Eqs. (5) and (7). With every iteration that is performed, the output state 
evolves through a time step of δτ . After sufficiently large enough time T, we expect the ground state with the 
least cost to prepare. For ||H||1T >> 1 we get,

where p̃ and q̃ represent the bit string solution of the binary representation of the numbers that multiply to give 
N. The evolution is achieved by using a variational circuit ansatz to prepares states that mimic the evolution of the 
system from a given starting state (as described in the previous section). The computational cost in performing 
one iteration of QITE is O(n5d) , where n is the bit-length of the number to be factored and d is the depth of the 
circuit (see Supplementary section 2 for proof).

Here we show an example of how to factorize N = 15 as

Expressing the factors 5 and 3 as binary variables and setting p0 = 1 , q0 = 1 yields

with the correct results defined by x0 = 0, x1 = 1, x2 = 1 . The corresponding cost function H(p, q) is cast as

Expanding the cost function and making use of x2i = xi yields,

Mapping the binary variables to spin variables yields,

(7)�θ(τ + δτ) = �θ(τ )+ �̇θ(τ )δτ

(8)H(p, q) = (N − p× q)2

(9)
p = 2

m−1pm−1 + 2
m−2pm−2 . . . 2

0q0

q = 2
l−1ql−1 + 2

l−2ql−2 . . . 2
0q0

(10)e−HT |+ + · · · +� ≈
∣

∣p̃
〉∣

∣q̃
〉

(11)15 = 5× 3

(12)
5 = 4x1 + 2x0 + 1

3 = 2x2 + 1

(13)H(x0, x1, x2) = [15− (4x1 + 2x0 + 1)(2x2 + 1)]2

(14)H(x0, x1, x2) = 196− 52x2 − 52x0 − 56x2x0 − 96x1 − 48x2x1 + 16x0x1 + 128x0x1x2

(15)H(s0, s1, s2) = 90− 36s2 − 40s1 − 20s0 + 2s2s0 + 4s2s0 + 20s0s1 + 16s0s1s2
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The classical binary variables si in the Hamiltonian is replaced by the Pauli-z spin operator to get a quantum 
Hamiltonian Operator that is then acted upon the full superposition state. Using a time step δτ = 0.1 , we make 
10 iterations of QITE to reach T = 1 . When simulated on QISKIT Aer using state-vector simulator backend, 
with a probability of greater than 90% , we obtain upon measurement

where the above expression is written in the computational basis. The output Eq. (16) when mapped back to the 
binary variables gives

We thus obtain the factors of 3 and 5 as expected. In our simulations, we shall make use of no more than the 
number of qubits needed to represent our solution in the optimization. This is to limit the numbers of qubits 
used, maximize the computational efficiency and reduce the accumulated errors.

We generate the output quantum state prepared using QITE with the ansatz shown in Fig. 1. Notice that the 
circuit consists of RY rotation gates applied to each qubit followed by a layer of CNOT gates that help with the 
entanglement of the qubits. Using only RY gates ensures that we maintain real amplitudes for the state when 
expressed in the computation basis. This helps with closely following the dynamics of QITE without introducing 
any nontrivial phase values.

Equation (5) for such a circuit ansatz can be re-expressed in terms of the quantum Fisher information (QFI) 
and the gradient of Hamiltonian expectation with respect to the current state. In classical probability, the Fisher 
information characterizes how much a probability distribution varies by changing a parameter that characterizes 
a distribution. This can be generalized and extended to talk about quantum states where one characterizes how 
much a state changes with respect to the parameter that governs it.  Refer24 for a brief introduction to quantum 
Fisher information. Given a quantum state |ψ(θ1, θ2 . . . θn)� , where θi represents the governing parameters, the 
QFI is given by

where 
∣

∣ψj

〉

=
d|ψ(θj)�

dθ  . For the ansatz being used to generate the state in QITE, we note that �ψi|ψ� = R(�ψi|ψ�) . 
This results in the second term vanishing due to the constant normalization of the state i.e, �ψ |ψ� = 1 . Hence we 
get Fij = 4Mij where Mij = R(�ψi(θ(τ ))|ψj(θ(τ ))�) . Note Fij being real symmetric, avoids the unstability that 
is likely to occur from inverting a skew symmetric matrix with small imaginary coefficients. Furthermore, since 
the Hamiltonian is an Hermitian operator, we can express the right hand side of Eq. (5) as follows

We thus obtain 
∑

j Fij θ̇j = −2 d
dθi

�H�ψ . The QFI of a given circuit and the gradient of an observable with respect 
to a state parameter can be directly computed in the IBM Qiskit Aqua framework (see Supplementary section 3 
for QFI module).

Results
Simulations. Smaller numbers were factorized on Qiskit using the QASM simulator. For 8 qubits and more, 
the simulations were run using the Numpy package. The amplitude threshold for the correct solution has been 
set to 0.85, this amounts to a probability of 73% to get the right solution when measured in the computational 
basis. We have restricted our ansatz to a single layer in addition to the base layer, in light of exploring shallow 
circuits for the near term quantum computers. The initial circuit parameters have been randomly sampled to 
help avoid valleys during the training and allow for faster convergence with shallow circuits employed. We have 
noticed that it also helps in suppressing one of the solutions in the case of symmetrically equivalent solutions 
(for instance, 391 can be factorized as 17× 23 and 23× 17 ), allowing one solution to quickly reach the threshold. 
Figure 2 plots the amplitude of the solution in the computational basis against the number of iterations for sev-

(16)e−HT |+ + +� ≈ |110�

(17)x0 = 0, x1 = 1, x2 = 1

(18)Fij = 4R(�ψi|ψj� − �ψi|ψ��ψ |ψj�)

(19)Ci = R(�ψ |H|ψi�) =
d

dθi
(�ψ |H|ψ�)/2

Figure 1.  Variational circuit used to prepare the quantum state for imaginary time evolution. The parameters 
have been randomly initialized.
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eral values of N that are represented using 5, 7, 8, and 9-qubit Hamiltonians. Note the amplitude of the solution 
to the factorization keeps raising with increasing the number of iterations. The figure also shows that the average 
number of iterations required to factorize increases with the number of qubits though we have not been able to 
analytically bound it. A few instances involve the amplitude of the solution flattening before continuing to raise 
any further, making it significantly slow. In Table 1, we note that despite some numbers being close to each other 
(for instance 1007 and 1081), the number of iterations for convergence to the solution seem to be widely varying. 
This can be attributed to the differences in bit string representation and thus the point of minima to the created 
cost function, and also to the fact that the parameters are being randomly initialized. Results on actual hardware 
for smaller instances have been presented in the next subsection. We have tested this method against a standard 
Variational Quantum EigenSolver (VQE), and would like to note that no statistically significant difference with 
regards to the number of iterations for converging to the solution has been observed.

Results on IBM-Hardware. We have made use of the publicly available IBM hardware to simulate factori-
zation for up to 5 qubits. We start the output state with a uniform superposition over all possible solutions. This 
is straightforwardly instantiated by setting the parameters of Ry gates in the base layer to be π

2
 and the remaining 

parameters to be all 0. We have avoided invoking the Hadamard test to compute the M matrix and C vector as 
this resulted in significant error accumulation. Instead, we have reformulated the computation as indicated in 
the methods section  and have made use of built-in Qiskit modules. The Gradient module with parameter shift 
method has been used to compute the C vector, while the QFI module with overlapping block diagonal method 
has been used to compute the M matrix. The built in QFI module makes 1024 shots on every circuit to be evalu-
ated and includes no measurement error mitigation by default. Please refer to the Qiskit source  documentation25 
for details on the implementation of these modules. Figure 3 shows the results of factorizing the numbers N = 
55, 65, 77 and 91 on IBMQ-lima hardware that supports 5 qubits. Unlike the simulations that hardly show any 
oscillation in the amplitude, we see oscillations being introduced due to noise when run on the hardware. The 
convergence of the solution in the presence of hardware noise makes this method a suitable candidate for solving 
factorization and other similarly framed optimization problems in the near term quantum computers.

Figure 2.  Numerical simulations of QITE for 7-, 8-, and 9-qubit factorization examples. The vertical axis 
indicates the amplitude of the solution in the computational basis and the horizontal axis indicates the number 
of iterations made. The curves in each subplot show how the amplitude of the solution corresponding to various 
numbers increases with iterations. The amplitude threshold has been set to 0.85.
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Discussion
We have shown how imaginary time evolution can be used to perform optimization and have demonstrated this 
for the case of prime factorization. We have shown numerical and experimental results from the factorization of 
several numbers represented by 7, 8, and 9-qubit Hamiltonians. We have shown that imaginary time evolution 
significantly populates the probability of measuring the correct solution to the factorization problem when run 
sufficiently long. The observed performance of the method on the IBM-lima hardware shows that the method is 
robust to noise and works as a proof of concept in the case of a limited number of qubits. Future work towards 
bounding the number of iterations analytically can help highlight the performance of this method against well 
known factorization techniques. We hope that the results explored here promote future work in the direction of 
exploring Quantum Imaginary time evolution in the context of solving optimization problems.

Table 1.  Table lists the numbers that were factorized alongside the number of iterations for convergence.

Number factorized Number of iterations

55 31

65 23

77 21

91 23

187 30

209 48

221 61

247 77

253 72

299 58

319 30

341 57

377 84

403 36

323 81

391 89

437 48

493 80

527 47

551 77

589 38

629 132

697 59

703 31

713 39

731 56

799 86

899 96

1007 21

1037 155

1081 112

1159 103

1247 112

1457 128

1643 88

1829 130
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